Parameterization of multivariate random effects models for categorical data.
نویسندگان
چکیده
Alternative parameterizations and problems of identification and estimation of multivariate random effects models for categorical responses are investigated. The issues are illustrated in the context of the multivariate binomial logit-normal (BLN) model introduced by Coull and Agresti (2000, Biometrics 56, 73-80). We demonstrate that the BLN model is poorly identified unless proper restrictions are imposed on the parameters. Moreover, estimation of BLN models is unduly computationally complex. In the first application considered by Coull and Agresti, an identification problem results in highly unstable, highly correlated parameter estimates and large standard errors. A probit-normal version of the specified BLN model is demonstrated to be underidentified, whereas the BLN model is empirically underidentified. Identification can be achieved by constraining one of the parameters. We show that a one-factor probit model is equivalent to the probit version of the specified BLN model and that a one-factor logit model is empirically equivalent to the BLN model. Estimation is greatly simplified by using a factor model.
منابع مشابه
Marginalized transition random effects models for multivariate longitudinal binary data
Generalized linear models with random effects and/or serial dependence are commonly used to analyze longitudinal data. However, interpretation and computation of marginal covariate effects can be difficult. Heagerty has proposed marginally specified logistic-normal models (1999) and marginalized transition models (2002) for longitudinal binary and categorical data in which the marginal mean is ...
متن کاملChain graph models of multivariate regression type for categorical data
Abstract: We discuss a class of graphical models for discrete data defined by what we call a multivariate regression chain graph Markov property. We propose a parameterization based on a sequence of generalized linear models with a multivariate logistic link function. We show the relationship with a chain graph model recently defined in the literature, and we prove that the proposed parametriza...
متن کاملFlexible marginalized models for bivariate longitudinal ordinal data.
Random effects models are commonly used to analyze longitudinal categorical data. Marginalized random effects models are a class of models that permit direct estimation of marginal mean parameters and characterize serial correlation for longitudinal categorical data via random effects (Heagerty, 1999). Marginally specified logistic-normal models for longitudinal binary data. Biometrics 55, 688-...
متن کامل‘Arm‐based’ parameterization for network meta‐analysis
We present an alternative to the contrast-based parameterization used in a number of publications for network meta-analysis. This alternative "arm-based" parameterization offers a number of advantages: it allows for a "long" normalized data structure that remains constant regardless of the number of comparators; it can be used to directly incorporate individual patient data into the analysis; t...
متن کاملDeterminants of Inflation in Selected Countries
This paper focuses on developing models to study influential factors on the inflation rate for a panel of available countries in the World Bank data base during 2008-2012. For this purpose, Random effect log-linear and Ordinal logistic models are used for the analysis of continuous and categorical inflation rate variables. As the original inflation rate response to variables shows an appar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 57 4 شماره
صفحات -
تاریخ انتشار 2001